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Abstract. We comment on serious errors in a recently published paper (El-Sayed A M A 1999
J. Phys. A: Math. Gen. 32 8647–54).

Generalized Laguerre polynomials

The so-called ‘generalized Laguerre polynomials’ discussed in ‘On the generalized Laguerre
polynomials of arbitrary (fractional) orders and quantum mechanics’ (El-Sayed 1999) are not
polynomials. Even the name gives rise to confusion, since this terminology is already used.
Moreover they are not, as claimed in the paper, square-integrable. The differential equation

x u′′(x) + (1 + β − x) u′(x) + α u(x) = 0

is, of course, just a special case of Kummer’s equation and has the confluent hypergeometric
functions as solutions (Abramowitz and Stegun 1970, chapter 13). The particular solution

Łβ
α(x) = � (α + β + 1)

� (α + 1) � (β + 1)
M(−α, β + 1, x)

reduces to the standard generalized Laguerre polynomials (Abramowitz and Stegun 1970,
section 13.6.9) when α = n = 0, 1, 2, . . ..

It is easy to show that the integral (equation (30) of El-Sayed 1999)
∫ ∞

0
e−x xβ Łβ

α(x)
2

dx

diverges when α is not a non-negative integer. From the asymptotic expansion of M(a, b, z)

for |z| large (a, b, fixed) (Abramowitz and Stegun 1970, section 13.5.1), M(−α, β + 1, x) goes
like

�(β + 1)

�(−α)
exx−α−β−1

leading to the following divergent integral
∫ ∞

0
e+x x−2α−β−2 dx.

The obvious fallacy which led to the incorrect conclusion presented by El-Sayed (1999)
is the argument leading to his equation (40). A bound for a function over a finite interval,
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[0, N ], cannot be used to show that the function is square-integrable over [0, ∞). As a simple
counter-example, ex is bounded by M = eN over [0, N ] but

∫ ∞

0
e−x xβ (ex)

2 dx

is clearly divergent.

Quantum Mechanics

From the above comments it follows that the claims made in section 5 of El-Sayed (1999)
are clearly wrong. His ‘generalized Laguerre polynomials’ do not ‘enhance[s] the field of the
definition of the solutions for the hydrogen atom’, nor do they ‘add a continuous spectrum in
between the discrete spectrum’ or ‘open the question of the completeness of the solutions’. In
fact, it was these rather surprising claims—which contradict the standard solutions presented
in any undergraduate quantum physics text—that made me question the validity of the paper.
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