Generalized Laguerre polynomials and quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 337659
(http://iopscience.iop.org/0305-4470/33/42/401)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:34

Please note that terms and conditions apply.

COMMENT

Generalized Laguerre polynomials and quantum mechanics

Paul C Abbott
Department of Physics, University of Western Australia, Nedlands 6907, Australia
E-mail: paul@physics.uwa.edu.au

Received 22 March 2000

Abstract. We comment on serious errors in a recently published paper (El-Sayed A M A 1999 J. Phys. A: Math. Gen. 32 8647-54).

Generalized Laguerre polynomials

The so-called 'generalized Laguerre polynomials' discussed in 'On the generalized Laguerre polynomials of arbitrary (fractional) orders and quantum mechanics' (El-Sayed 1999) are not polynomials. Even the name gives rise to confusion, since this terminology is already used. Moreover they are not, as claimed in the paper, square-integrable. The differential equation

$$
x u^{\prime \prime}(x)+(1+\beta-x) u^{\prime}(x)+\alpha u(x)=0
$$

is, of course, just a special case of Kummer's equation and has the confluent hypergeometric functions as solutions (Abramowitz and Stegun 1970, chapter 13). The particular solution

$$
Ł_{\alpha}^{\beta}(x)=\frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1) \Gamma(\beta+1)} M(-\alpha, \beta+1, x)
$$

reduces to the standard generalized Laguerre polynomials (Abramowitz and Stegun 1970, section 13.6.9) when $\alpha=n=0,1,2, \ldots$..

It is easy to show that the integral (equation (30) of El-Sayed 1999)

$$
\int_{0}^{\infty} \mathrm{e}^{-x} x^{\beta} Ł_{\alpha}^{\beta}(x)^{2} \mathrm{~d} x
$$

diverges when α is not a non-negative integer. From the asymptotic expansion of $M(a, b, z)$ for $|z|$ large (a, b, fixed) (Abramowitz and Stegun 1970, section 13.5.1), $M(-\alpha, \beta+1, x)$ goes like

$$
\frac{\Gamma(\beta+1)}{\Gamma(-\alpha)} \mathrm{e}^{x} x^{-\alpha-\beta-1}
$$

leading to the following divergent integral

$$
\int_{0}^{\infty} \mathrm{e}^{+x} x^{-2 \alpha-\beta-2} \mathrm{~d} x .
$$

The obvious fallacy which led to the incorrect conclusion presented by El-Sayed (1999) is the argument leading to his equation (40). A bound for a function over a finite interval,
$[0, N]$, cannot be used to show that the function is square-integrable over $[0, \infty)$. As a simple counter-example, e^{x} is bounded by $M=\mathrm{e}^{N}$ over $[0, N]$ but

$$
\int_{0}^{\infty} \mathrm{e}^{-x} x^{\beta}\left(\mathrm{e}^{x}\right)^{2} \mathrm{~d} x
$$

is clearly divergent.

Quantum Mechanics

From the above comments it follows that the claims made in section 5 of El-Sayed (1999) are clearly wrong. His 'generalized Laguerre polynomials' do not 'enhance[s] the field of the definition of the solutions for the hydrogen atom', nor do they 'add a continuous spectrum in between the discrete spectrum' or 'open the question of the completeness of the solutions'. In fact, it was these rather surprising claims-which contradict the standard solutions presented in any undergraduate quantum physics text-that made me question the validity of the paper.

References

Abramowitz M and Stegun I 1970 Handbook of Mathematical Functions (New York: Dover)
El-Sayed A M A 1999 On the generalized Laguerre polynomials of arbitrary (fractional) orders and quantum mechanics J. Phys. A: Math. Gen. 32 8647-54

